Меню

Как сделать уравнение прямой зная координаты двух точек

Уравнение прямой, проходящей через 2 точки

Работы любой сложности

Квалифицированная помощь от опытных авторов

Суть уравнения прямой, проходящей через две заданные точки

Необходимо сделать вывод формулы для прямой, которая пересекает эти заданные точки.

Точка \(М (х, у)\) соответствует прямой \(M_ <0>M_<1>\) только в том случае, когда ее радиус-вектор \(\vec\) соответствует следующему условию:

Где t является некоторым действительным числом (параметром). Координатная форма уравнения имеет следующий вид:

Определив параметр t с помощью первого и второго уравнений системы, можно получить доказательство следующего соотношения:

Формула будет иметь следующий вид:

Данное равенство вытекает из канонического уравнения, если выбрать направляющим вектором:

Вектор \(\vecM_<1>>\) будет равен:

То есть, замещая следующие параметры:

Уравнение прямой в отрезках

Пусть координатные оси включают две точки: \(X_<1>\left(x_<1>,0 \right)\) и \(Y_<1>\left(0, y_ <1>\right)\)

Следует отметить следующее условие:

Необходимо записать уравнение прямой, которая проходит через заданные точки, подставив в формулу:

В результате уравнение принимает следующий вид:

Если поменять местами правую и левую части уравнения, то равенство примет такой вид:

Данную формулу называют уравнением прямой в отрезках. С помощью прямой, которая пересекает точки: \(X_<1>\left(x_<1>,0 \right)\) и \(Y_<1>\left(0, y_ <1>\right)\)

координатные оси делят на отрезки х1 на оси абсцисс и у1 на оси ординат. Длины отрезков будут рассчитаны следующим образом:

Как записать формулу, канонический вид

Какой-либо вектор, отличный от нуля, проходит по данной прямой или параллельно ей, называют направляющим вектором этой прямой. Для обозначения направляющего вектора произвольной прямой используют букву \(\bar\)

Координаты данного вектора обозначают с помощью букв l, m, n. Таким образом, можно прийти к следующему уравнению:

Уравнение в таком виде называют каноническим.

Параметрическое уравнение прямой, проходящей через две точки

Канонические уравнения для прямой, которая пересекает следующие точки:

будет записано в следующем виде:

Равные отношения можно обозначить буквой t в канонических уравнениях. В итоге они приобретают такой вид:

Исход из этого, получается равенство:

Данные равенства являются параметрическими уравнениями прямой, которая пересекает точку \(M_<0>\left(x_<0>;y_<0>; z \right)\) в направлении вектора \(\bar=\left\\)

В данном случае t является произвольно изменяющимся параметром, x, y, z представляют собой функции от t. Если изменяется t, то значения x, y, z также меняются. Таким образом, точка M (x; y; z) перемещается вдоль прямой. Если параметр t использовать в качестве переменного времени, а уравнения представить в виде формул, описывающих движение точки М, то с помощью данных уравнений можно определить прямолинейное и равномерное движение точки М. При t равным 0 точка М будет совпадать с точкой M.

Скорость V точки М обладает постоянным значением и рассчитывается по формуле:

Примеры задач с решением

Задача 1

Решение

Уравнение прямой, которая проходит через точки:

будет иметь следующий вид:

После того, как координаты точек А и В будут применены к первому уравнению, оно будет записано в такой форме:

После некоторых преобразований получается:

В данном случае наличие ноля в знаменателе не обозначает деление на ноль. Параметрическое уравнение прямой будет записано таким образом:

Если выразить переменные x, y, z с помощью параметра t, в итоге получится:

Читайте также:  Как сделать так чтобы гравий не падал в майнкрафт

Задача 2

Решение

Уравнение для прямой, которая пересекает заданные точки:

будет записано таким образом:

После подстановки координат точек А и В в исходную формулу, она приобретет такой вид:

Далее можно записать параметрическое уравнение прямой:

Выразив переменные x, y, z с помощью параметра t, можно получить следующее уравнение:

Ответ: каноническое уравнение прямой, пересекающей заданные точки A(1, 1/5, 1) и B(−2, 1/2, −2) записано в следующем виде:

параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Консультации по выполнению всех типов работ

Источник

Урок 29. Нахождение уравнение прямой по двум точкам

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Сегодня мы начнем изучать алгоритмы, связанные с геометрией. Дело в том, что олимпиадных задач по информатике, связанных с вычислительной геометрией, достаточно много и решение таких задач часто вызывают затруднения.

За несколько уроков мы рассмотрим ряд элементарных подзадач, на которые опирается решение большинства задач вычислительной геометрии.

На этом уроке мы составим программу для нахождения уравнения прямой, проходящей через заданные две точки. Для решения геометрических задач нам понадобятся некоторые знания из вычислительной геометрии. Часть урока мы посвятим знакомству с ними.

Сведения из вычислительной геометрии

Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач.

Исходными данными для таких задач могут быть множество точек на плоскости, набор отрезков, многоугольник (заданный например, списком своих вершин в порядке движения по часовой стрелке) и т.п.

Результатом может быть либо ответ на какой то вопрос (типа принадлежит ли точка отрезку, пересекаются ли два отрезка, …), либо какой-то геометрический объект (например, наименьший выпуклый многоугольник, соединяющий заданные точки, площадь многоугольника, и т.п.).

Мы будем рассматривать задачи вычислительной геометрии только на плоскости и только в декартовой системе координат.

Векторы и координаты

Чтобы применять методы вычислительной геометрии, необходимо геометрические образы перевести на язык чисел. Будем считать, что на плоскости задана декартова система координат, в которой направление поворота против часовой стрелки называется положительным.

Теперь геометрические объекты получают аналитическое выражение. Так, чтобы задать точку, достаточно указать её координаты: пару чисел (x; y). Отрезок можно задать, указав координаты его концов, прямую можно задать, указав координаты пары ее точек.

Но основным инструментом при решении задач у нас будут векторы. Напомню поэтому некоторые сведения о них.

Отрезок АВ, у которого точку А считают началом (точкой приложения), а точку В – концом, называют вектором АВ и обозначают либо , либо жирной строчной буквой, например а.

Для обозначения длины вектора (то есть длины соответствующего отрезка) будем пользоваться символом модуля (например, ).

Произвольный вектор будет иметь координаты, равные разности соответствующих координат его конца и начала:

,

здесь точки A и B имеют координаты соответственно.

Для вычислений мы будем использовать понятие ориентированного угла, то есть угла, учитывающего взаимное расположение векторов.

Ориентированный угол между векторами a и b положительный, если поворот от вектора a к вектору b совершается в положительном направлении (против часовой стрелки) и отрицательный – в другом случае. См рис.1а, рис.1б. Говорят также, что пара векторов a и b положительно (отрицательно) ориентирована.

Читайте также:  Как сделать чтобы сим карта работала в планшете

Рис. 1а

Рис. 1б

Таким образом, величина ориентированного угла зависит от порядка перечисления векторов и может принимать значения в интервале .

Многие задачи вычислительной геометрии используют понятие векторного (косого или псевдоскалярного) произведений векторов.

Векторным произведением векторов a и b будем называть произведение длин этих векторов на синус угла между ними:

.

Векторное произведение векторов в координатах:

Выражение справа — определитель второго порядка:

В отличии от определения, которое дается в аналитической геометрии, это скаляр.

Знак векторного произведения определяет положение векторов друг относительно друга:

Если величина , то пара векторов a и b положительно ориентирована.

Если величина , то пара векторов a и b отрицательно ориентирована.

Векторное произведение ненулевых векторов равно нулю тогда и только тогда, когда они коллинеарны ( ). Это значит, что они лежат на одной прямой или на параллельных прямых.

Рассмотрим несколько простейших задач, необходимых при решении более сложных.

Уравнение прямой

Определим уравнение прямой по координатам двух точек.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки: с координатами (x1;y1) и с координатами (x2; y2). Соответственно вектор с началом в точке и концом в точке имеет координаты (x2-x1, y2-y1). Если P(x, y) – произвольная точка на нашей прямой, то координаты вектора равны (x-x1, y – y1).

С помощью векторного произведения условие коллинеарности векторов и можно записать так:

, т.е. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

Последнее уравнение перепишем следующим образом:

Итак, прямую можно задать уравнением вида (1).

Задача 1. Заданы координаты двух точек. Найти её представление в виде ax + by + c = 0.

Источник

Как составить уравнение прямой по двум точкам: двумерный и трехмерный случаи

Уравнение прямой для двумерного и трехмерного случаев

Прежде чем переходить к обсуждению вопроса, как по двум точкам составить уравнение прямой, следует понять, о чем идет речь.

Под уравнением прямой понимают равенство, связанное с принятой системой координат, причем все значения переменных, удовлетворяющие ему, должны ложиться на одну прямую. В двумерном и трехмерном случаях это уравнение можно задать в следующем виде:

В двумерном случае каждая точка на плоскости однозначно задается двумя координатами x и y, поэтому можно записать уравнение прямой в виде:

Выражая параметр альфа и приравнивая полученные равенства, приходим к виду:

Полученное выражение знакомо каждому школьнику. Оно называется общим уравнением прямой на плоскости.

В пространстве каждая точка задана не двумя, а тремя координатами, поэтому ее уравнение параметрически-векторное принимает форму:

Параметрически-векторное уравнение удобно использовать, когда нужно составить уравнение прямой, проходящей через две точки.

Прямая и две точки

Теперь рассмотрим непосредственно вопрос статьи. Как по двум точкам составить прямой уравнение? Сначала получим уравнение на плоскости, а затем обобщим его для трехмерного случая.

Предположим, что имеется две точки на плоскости P(x1; y1) и Q(x2; y2). Если взять разность координат точек, то мы получим вектор, который направлен от одной из них к другой. Этот вектор равен:

В данном случае PQ¯ направлен от P (начало направленного отрезка) к Q (его конец). Поскольку обе точки принадлежат прямой, то и вектор PQ¯ принадлежит ей. Это означает, что его можно считать направляющим. Уравнение прямой принимает вид:

Читайте также:  Как сделать селедку с маслом и лимоном

Здесь мы взяли точку P. Если ее заменить точкой Q, то уравнение не изменится.

Как по двум точкам составить уравнение прямой в пространстве? Обобщая полученную формулу для плоскости, получаем:

Другая буква для параметра взята чтобы показать независимость этого и предыдущего уравнений.

Пример решения задачи

Разобравшись, как составить прямой уравнение по двум точкам, приведем пример использования полученных знаний для двумерного случая.

Вычисляем координаты направляющего вектора:

Параметрически-векторное уравнение имеет вид:

Раскроем его и приведем к общему виду:

Мы получили уравнение в привычном (общем) виде. Можно проверить его справедливость, подставив координаты обеих точек из условия задачи.

Источник

Уравнение прямой, проходящей через две точки онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Уравнение прямой, проходящей через две точки − примеры и решения

Подставив координаты точек A и B в уравнение (1), получим:

(Здесь 0 в знаменателе не означает деление на 0).

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).

Подставив координаты точек A и B в уравнение (2), получим:

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Источник

Составить уравнение прямой, проходящей через две точки

Рассмотрим, как составить уравнение прямой, проходящей через две точки, на примерах.

Составить уравнение прямой, проходящей через точки A(-3; 9) и B(2;-1).

1 способ — составим уравнение прямой с угловым коэффициентом.

2 способ — составим общее уравнение прямой.

Общее уравнение прямой имеет вид ax+by+c=0. Подставив координаты точек A и B в уравнение, получаем систему:

Поскольку количество неизвестных больше количества уравнений, система не разрешима. Но можно все переменные выразить через одну. Например, через b.

получим: 5a-10b=0. Отсюда a=2b.

2bx+by-3b=0. Осталось разделить обе части на b:

Общее уравнение прямой легко приводится к уравнению прямой с угловым коэффициентом:

3 способ — составим уравнение прямой, проходящей через 2 точки.

Уравнение прямой, проходящей через две точки, имеет вид:

Подставим в это уравнение координаты точек A(-3; 9) и B(2;-1)

В школьном курсе чаще всего используется уравнение прямой с угловым коэффициентом. Но самый простой способ — вывести и использовать формулу уравнения прямой, проходящей через две точки.

Если при подстановке координат заданных точек один из знаменателей уравнения

окажется равным нулю, то искомое уравнение получается приравниваем к нулю соответствующего числителя.

Подставляем в уравнение прямой, проходящей через 2 точки, координаты точек C и D:

Составить уравнение прямой, проходящей через точки M (7; 3) и N (7; 11).

Источник

Adblock
detector