Меню

Потребление кислорода как показатель здоровья

Потребление кислорода как показатель здоровья

Гомеостаз организма поддерживается тщательной регуляцией кардиореспираторных реакций на физическую нагрузку. Существует два показателя, адекватно отражающих метаболические потребности организма: потребление кислорода и выделение СО2.

Уровень физической активности является наиболее важным моментом, определяющим потребность организма в кислороде. В свою очередь потребление кислорода представляет собой самый адекватный индекс физического напряжения.

При потреблении 1 л кислорода образуется энергия, эквивалентная приблизительно 5 ккал. В данной статье минутный объем потребления кислорода обозначен как Vo2 и выражается в литрах в минуту, приведенных к нормальным условиям (STPD).

Метаболическую стоимость различной активности организма нередко выражают в миллилитрах на килограмм в минуту(мл/кг*мин) Vo2 (STPD). Это простой способ, учитывающий размеры тела человека. В свое время различными авторами были предложены отдельные классификации тяжести физической нагрузки в промышленности, спорте и некоторых других сферах, связанных с физической активностью человека. Эти исследования коснулись также области подводных погружений и подводного плавания. Из разных источников известно, что общая средняя величина потребления кислорода во время длительного свободного плавания в ластах со скоростью близкой к 0,56 м/с составляет 2 л/мин (STPD).

В 1973 г. Morrison сообщил об исследовании максимального усилия при фиксированном плавании в ластах на погружаемом тренажере-трапеции при различной имитируемой глубине. Полученные результаты были близкими к средней величине и диапазону значений, установленному Lanphier в 1954 г. для испытуемых, плывущих со скоростью 0,61 м/с.

Исследование в реальных условиях при заплыве под водой на длинную дистанцию в океане было проведено Hunt и сотрудниками в 1964 г. Непосредственно минутный объем потребления кислорода не измеряли, но по другим показателям можно было предположить, что он находится в пределах 1,3—1,8 л/мин. Рассчитанная скорость плавания составляла 0,5—0,61 м/с.

Аэробная способность

В любой конкретный момент времени индивидуальный Vo2 должен непременно находиться между минимальным (основным) и наивысшим значениями, которых данный организм способен достичь. Учитывая размеры тела и степень физического расслабления, минимальные величины Vo2 для взрослых равны 0,2 л/мин. Наиболее часто используемая в расчетах средняя величина Vo2 для человека, находящегося в. состоянии покоя, составляет 0,3 л/мин.

Каждый человек имеет верхний предел потребления кислорода, который может быть достигнут при очень тяжелой физической работе, вовлекающей основные группы мышц. Максимальный Vo2 (VO2макс) или «аэробная способность» у здоровых людей, находящихся в условиях нормального атмосферного давления, обусловлен способностью циркуляторной системы организма доставлять кислород из легких в работающие мышцы. Как видно из имеющихся в литературе данных, затруднение легочной вентиляции при нахождении на глубине ограничивает величину VO2макс.

Величина VO2макс зависит не только от размеров тела и конституциональных особенностей человека, но в основном от степени его индивидуальной спортивной тренированности. Почти все исследователи считают значение VO2макс самым показательным индексом «физической пригодности» сердечно-сосудистой и респираторной системы.

Для водолазов со средними параметрами тела и умеренной «пригодностью» можно считать VO2макс равным по крайней мере 3 л/мин. Такие высокие величины VO2макс как 6 л/мин встречаются очень редко. Водолаз с необычайно высокой величиной максимального минутного объема потребления кислорода для своих параметров имеет определенные преимущества при погружении перед остальными водолазами, особенно относительно вентиляторных потребностей организма при высоких уровнях физических нагрузок.

Влияние водной среды на VO2макс по-видимому, является существенным. В 1974 г. Holmer показал, что у пловцов высшей квалификации во время плавания VO2макс приблизительно равнялся таковому при работе на велоэргометре в воздушной среде, но был на 6—7% ниже, чем во время бега. У менее опытных пловцов установленные различия были более выраженными.

Moore и сотрудники в 1970 г. не обнаружили понижения физической работоспособности у испытуемых, работавших ногами (неплавательный характер упражнений) во время погружения всего тела в воду. В 1973 г. Morrison сообщил о результатах, свидетельствующих об ограничении Vо2макс при плавании в ластах на тренажере-трапеции. Однако в данном случае на полученные данные мог оказать влияние и дыхательный аппарат.

Читайте также:  В ижевске группы здоровья

Источник

Потребление кислорода

Одна из характеристик степени тренированности спортсмена — его способность потреблять много кислорода под нагрузкой: чем больше, тем лучше. Однако, здесь много нюансов, о которых мы вам постараемся рассказать в доступной форме. И начнем с самых простых вещей.

Разница между потреблением кислорода и легочной вентиляцией

Исходная концентрация кислорода во вдыхаемом нами воздухе (в нормальном) составляет 20,9%. Нормальная концентрация кислорода в выдыхаемом воздухе считается равной 16,3% (мы не можем полностью использовать проходящий через легкие кислород). Однако, эта вторая цифра не постоянна — в некоторых случаях она может заметно отличаться от указанного значения в большую сторону (если организм мало забирает кислорода). Итак, в норме, мы способны забирать из воздуха до 4,6% кислорода (или меньше). Таким образом, потребление кислорода организмом как минимум в 22 раза меньше, чем легочная вентиляция, хотя оба показателя измеряются литрами в минуту.

Путь кислорода от легких к мышцам

Наши легкие пытаются «накачивать» кровь кислородом, а кровь доставляет этот кислород к работающим мышцам. Очевидно, кровь имеет предел насыщения, больше которого она в себя «впитать» не может. Этот предел связан с уровнем гемоглобина — чем он больше, тем больше кровь может в себя «впитать». Каждый грамм гемоглобина способен переносить около 1,3 мл кислорода (теоретический предел чуть выше, но он на практике не достигается). Нормально высокий (!) для здорового человека уровень гемоглобина у мужчин достигает 150-170 г/л, у женщин — 140-160 г/л. Таким образом каждый литр крови способен переносить до 180-220 мл кислорода.

Занятия спортом увеличивают производительность сердца

Ударный объем крови для среднестатистического мужчины составляет около 120 мл, для тренирующегося физкультурника — 130-160 мл, для квалифицированного спортсмена 170-180 мл, для элиты мирового спорта 190-220. Таким образом, объем кислорода, который может быть доставлен к мышцам в соревновательном режиме, колеблется у разных людей (физкультурников и спортсменов) в довольно широком диапазоне: примерно от 3 до 8 литров в минуту. Однако, значения более 7 л/мин встречаются крайне редко, как правило у крупных спортсменов элитного уровня в циклических видах спорта (эти цифры пока касаются только возможностей сердца).

Потребление кислорода мышцами

И вот, мы дошли до самого интересного. А сколько кислорода могут «кушать» мышцы? Оказывается, самые тренированные с точки зрения выносливости мышечные волокна окислительного типа (ОМВ) способны потреблять не более 300 мл в минуту на килограмм своей массы. Наименее выносливые гликолитические волокна (ГМВ) «едят» около 120 мл/мин. В среднем же, у хорошо тренированных спортсменов основные рабочие мышцы потребляют около 200 мл в минуту на каждый килограмм. Остается лишь понять, сколькими килограммами мышц мы работаем?

Наши мышцы неоднородны. Их волокна имеют разную степень тренированности

И тут во всей красе появляется разница между различными видами спорта. Если велосипедист работает в основном ногами, то, например, лыжник активно использует ноги, руки, спину и пресс. Разница в общей массе активно работающих мышц может быть более чем двукратной. При этом не трудно посчитать, что при потенциальной способности сердечно сосудистой системы доставлять мышцам 6 литров кислорода в минуту (это уровень олимпийцев), «накормить» можно не более 30 кг мышц. Вот и приходится выбирать, где эти килограммы выгоднее использовать.

Если велосипедист вполне может себе позволить 30 кг активной мышечной массы в ногах, то лыжнику такая роскошь не позволительна — ему нужно кормить кислородом также руки, спину и пресс. Отсюда и спортивная морфология (различия в составе тела у спортсменов, представляющих разные виды спорта). А теперь, обещанный разговор о нюансах.

Читайте также:  Имбирный чай для мужского здоровья

Где ваше слабое место

Если сердце некоего индивидуума способно обеспечить поступление к мышцам 3 л кислорода в минуту, то при среднем уровне тренированности этого хватит примерно на 20 кг активно работающих мышц. Для человека средних габаритов, увлеченного бегом (любителя) этого хватит за глаза. Но если речь идет о раскачанном бодибилдере, вставшем на беговые лыжи, то перемещаться ему будет крайне сложно даже классическим стилем. Задыхаться будет.

Теперь обратный пример. Если лыжник, отчаявшийся от постоянного пролета мимо подиума, имеющий производительность сердца 5,5 л/мин, решит уйти в велоспорт, то он имеет шансы стать там звездой мирового или как минимум национального уровня. если только сможет накачать мышцы ног и затем их правильно «окислить», так чтобы потребление кислорода мышцами ног увеличилось с нормальных для лыжного спорта 4 л/мин до нормальных велосипедных 5,5 л/мин. Желательно, правда, при этом немного согнать лишние мышцы в верхней части тела, но это уже нюансы.

Можно привести примеры из профессионального спорта, когда победителя крупного турнира дисквалифицируют за использование кровяного допинга. Таким путем спортсмен ощутимо повысил себе уровень гемоглобина, увеличив объем кислорода, который переносит его кровь.

Как видим, довольно простая арифметика помноженная на довольно не простое лабораторное тестирование спортсмена позволяет оценить, чего не хватает для достижения желаемого уровня результатов. Однако, самого главного мы Вам пока так и не сказали.

Абсолютные или относительные показатели

Еще один нюанс состоит в том, что далеко не всегда имеют смысл абсолютные показатели. Скажем, спортсмен массой 120 кг, имеющий МПК 5 л/мин, в большинстве случаев уступит спортсмену массой 60 кг, имеющему МПК 4 л/мин. В тех случаях, когда состязание НЕ связано с преодолением силы земного притяжения или резкими разгонами и торможениями, перевес часто оказывается на стороне того спортсмена, у кого больше абсолютные показатели мощности и потребления кислорода. Но если предстоит куда-то подниматься или разгоняться, сильнее оказывается тот, кто имеет хорошие удельные показатели, отнесенные к собственному весу. Особенно это наглядно в велоспорте, где есть крупные мускулистые спринтеры с высокими абсолютными показателями и легкие «горняки» — легкие и сухие, с хорошими относительными показателями. Также можно сравнить бегунов на длинные дистанции и гребцов. Если в марафонском беге «нечего ловить» большим и сильным, то в гребле «отдыхают» «мелкие» и сухие.

А причем тут максимум?

Хотя при прохождении тестирования многие обращают внимание на максимальное потребление кислорода (МПК) и максимальную алактатную мощность, которую способен выдать спортсмен, чаще всего в циклических видах спорта успех определяют совсем не эти максимальные показатели. Куда важнее оказывается потребление кислорода (ПК) на уровне ПАНО (порога анаэробного обмена) и соответствующая этому порогу мощность. Ведь, если МПК указывает на кратковременные возможности организма, то ПК на уровне ПАНО говорит о той работе, которую спортсмен способен выдавать в течение длительного времени. Поэтому, для спринтеров важно знать МПК и максимальную алактатную мощность, а для для стайеров (дистанционщиков) — важнее ПК на уровне ПАНО и мощность на этом режиме. Кроме того, различают также ПК на уровне аэробного порога (АэП) и мощность, соответствующую этому режиму работы.

Отношение ПК на уровне АнП (анаэробного порога) к максимальному потреблению кислорода (МПК) показывает, насколько хорошо у спортсмена «окислены» его основные действующие мышцы (сколь велика в них масса митохондрий). Чем ближе ПК на уровне АнП к значению МПК, тем выше выносливость. Эта относительная величина также зависит от многих факторов: вида спорта, используемых в работе мышц (ноги, руки и т.д.) и даже методики тестирования.

Читайте также:  Паронит вреден ли для здоровья

Источник

Максимальное потребление кислорода: зачем нужен МПК или VO2max

Показатель МПК и концепцию кислородного долга впервые озвучил английский физиолог Арчибальд Хилл, а в 1922 году получил Нобелевскую премию за это открытие. Максимальное потребление кислорода (МПК или VO2max) – показатель работоспособности и аэробной выносливости организма. Он важен для большинства циклических видов спорта, а особенно в беге от 800 до 5000 м и в аналогичных по времени нагрузки дисциплинах. С 2016 года Американская кардиологическая ассоциация использует МПК для оценки состояния сердечно-сосудистой системы.

Что такое и зачем нужен показатель МПК?

Максимальное потребление кислорода (МПК или VO2max) – это максимальный объем кислорода, который организм может потребить из вдыхаемого воздуха за 1 минуту при максимальной нагрузке. Количество кислорода измеряется в мл на кг массы тела в минуту: мл/кг/мин. Показатель аэробной производительности и общей выносливости спортсмена. Другими словами, МПК определяет, насколько эффективно сердце, легкие и сосуды обеспечивают организм кислородом во время продолжительных нагрузок.

Чем выше МПК – тем больше кислорода поступает в мышцы и больше энергии вырабатывается. По МПК можно отследить динамику тренировочного процесса: если показатель растет – физическая форма становится лучше. Если показатель падает – стоит пересмотреть тренировочный план.

Важно понимать, что МПК не связан напрямую с результатами на соревнованиях. Это относительный показатель, по которому можно отслеживать эффективность тренировок. Существует много примеров, когда спортсмен с более низким МПК выигрывает обладателя высокого МПК. Иногда в организме включаются ограничители, которые не позволяют использовать все возможности и выйти на максимальное потребление кислорода. В таком случае нужно искать причину в силе мышц, технике, составе крови, пороге анаэробного обмена (ПАНО) и т.д. Бывает, что главным ограничителем выступает мозг и нервная система, которые не дают «выложиться» из-за инстинкта самосохранения.

От чего зависит МПК?

Под ней подразумеваются важные физиологические показатели: объем легких, размер сердца, эластичность сосудов и сети капилляров, уровень гемоглобина и объем крови, количество митохондрий и активность мышечных ферментов, перерабатывающих кислород в энергию, жировая и мышечная массы тела, стрессоустойчивость центральной нервной системы. Чем лучше эти показатели, тем выше МПК.

У нетренированного взрослого человека МПК составляет примерно 45 мл/кг/мин, МПК бегуна-любителя лежит в пределах 50-60 мл/кг/мин. Все это гораздо ниже МПК профессионального спортсмена – оно может достигать уровня 80-90 мл/кг/мин.

Ученые пришли к выводу, что предельные показатели МПК и способность его развития наследуются. То есть у каждого есть своя планка МПК, которая задана природой. Но подобраться к генетической планке удается только атлетам мирового уровня, спортсменов-любителей даже высокого уровня это никак не ограничивает. Именно генетические особенности объясняют тот факт, что в тренировочной группе одни атлеты быстро наращивают МПК, а другие – нет. Для развития МПК нужен индивидуальный подход, в зависимости от реакции организма на нагрузку.

Вес тела легко оценить с помощью индекса массы тела (ИМТ). Согласно исследованиям, опубликованным в Journal of Sports Medicine and Physical Fitness, высокий индекс массы тела связан с пониженным МПК. Читайте как определить свой ИМТ и процент жира в организме.

В среднем у мужчин МПК выше на 20-30%, чем у женщин. Это объясняется генетическими особенностями: процент жира, гормоны, гемоглобин, объем сердца и легких.

Уровень МПК может расти до 35 лет. Затем максимальное потребление кислорода снижается, уменьшаясь к 65 годам примерно на 30%.

Источник

Adblock
detector